
Cuckoo: Towards Decentralized, Socio-Aware Online
Microblogging Services and Data Measurements

Tianyin Xu1,2, Yang Chen1, Jin Zhao1,3, Xiaoming Fu1

1 Institute of Computer Science, University of Goettingen, Goettingen, Germany
2 State Key Lab. for Novel Software and Technology, Nanjing University, Nanjing, China

3 School of Computer Science, Fudan University, Shanghai, China
{tianyin.xu, yang.chen, fu}@cs.uni-goettingen.de, jzhao@fudan.edu.cn

ABSTRACT
Online microblogging services, as exemplified by Twitter [9]
and Yammer [12], have become immensely popular during
the latest three years. Twitter, the most successful mi-
croblogging service, has attracted more than 41.7 million
users as of July 2009 [25] and is still growing fast. However,
current microblogging systems severely suffer from perfor-
mance bottlenecks and central points of failure due to their
centralized architecture. Thus, centralized microblogging
systems may threaten the scalability, reliability, as well as
availability of the offered services, not to mention the ex-
tremely high operational and maintenance cost.
However, it is not trivial to decentralize microblogging ser-

vices in a peer-to-peer fashion. The challenges first derive
from the heterogeneity of the inherent online social network
(OSN) features. The non-reciprocation feature of microblog-
ging services also increases the heterogeneity. Moreover, dif-
ferent from traditional approaches used in centralized server-
based systems, an efficient, robust and scalable approach for
data collection and dissemination in such distributed hetero-
geneous environments is desirable.
In this paper, we present a decentralized, socio-aware mi-

croblogging system named Cuckoo. The design takes advan-
tages of the inherent social relationships while leverages P2P
techniques towards scalable, reliable microblogging services.
Besides, Cuckoo provides a flexible interface for data collec-
tion while circumventing unnecessary traffic on the server.
We discuss the benefits that our system may bring for both
service providers and end users. We also discuss the techni-
cal aspects to be considered and report our work in progress.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

General Terms
Design, Performance

Keywords
Microblogging Services, Online Social Networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotPlanet’10 , June 15, 2010, San Francisco, CA, USA
Copyright 2010 ACM 978-1-4503-0177-0 ...$10.00.

1. INTRODUCTION
With the phenomenal success of Twitter-like Internet ser-

vices, microblogging (e.g., Twitter [9], Yammer [12], Buzz
[5], etc) has emerged as a new, popular communication util-
ity in the latest years. Microblogging has become popular
quite quickly. For example, Twitter, the most successful mi-
croblogging service launched in October 2006, has attracted
more than 41.7 million users as of July 2009 and its userbase
is still growing incredibly fast. Nowadays, microblogging
services play important roles in many aspects of people’s
social life [21, 35]: from releasing emotional stress, to keep-
ing in touch with friends, to collaborating with colleagues
at work, etc. Moreover, the functionalities of microblogging
services are even beyond human social networks. Microblog-
ging is becoming an important media for spreading news to
large groups of people [25, 31, 35], from new product mar-
keting, to political campaign publicity, to immediate news
breaking, etc. One impressive story is that Twitter broke
the news about China’s massive earthquake well before the
mainstream media [11].

Current microblogging services depend on centralized ar-
chitectures, where user clients repeatedly request centralized
servers (e.g., Twitter Server) for newest micro-contents no
matter whether there is a new update1. Such polling-style
requests are blind, superfluous and sticky. The centralized
microblogging systems suffer severely from performance bot-
tleneck (e.g., Twitter’s rate limiting, 150 requests per hour is
allowed) and central point of failure (e.g., Twitter’s not rare
“over capacity” errors and “database maintenance” errors).
Although Twitter has made several performance improve-
ments, such as removing the upper limit on the subscrip-
tion number in 2009, by increasing the number of dedicated
servers, it still can hardly catch up with the steadily-growing
user demands. As a result, centralized microblogging sys-
tems may threaten the scalability, reliability, as well as avail-
ability of the offered services, not to mention the extremely
high operational and maintenance cost.

One important aspect is data collection. Data collection
is critical for researchers and third-party developers to un-
derstand user behavior and access patterns of microblogging
services. So far, data collection is performed via data crawl-
ing on centralized servers [21, 25], which may cause traffic
storms and is not scalable. Even worse, such methods may
fail to retrieve statistics from departed peers. More efficient
and scalable data collection schemes are required to let users
directly exchanging vital statistics in a decentralized fashion.

However, it is not trivial to decentralize microblogging ser-

1In this paper, we use “microblog”, “micro-content”, “micro-
news”, “status”, “update” interchangeably.

vices in a peer-to-peer fashion. The challenges mainly derive
from the heterogeneity of the inherent online social network
(OSN) features. Furthermore, the non-reciprocation feature
of microblogging’s opt-in subscription model [31] increases
the heterogeneity. The basic operation of the subscription
model is “follow”. Being a follower means that the user will
receive all the micro-contents from the one he follows. A
user can follow anyone, and the one being followed need not
follow back. We summarize the main challenges as follows:

1. Support users with heterogenous social relationships,
such as broadcasters and miscreants [23]. Broadcast-
ers include celebrities and news media that have huge
numbers of followers. For example, cnnbrk (CNN
Breaking News) in Twitter has over 2.97 million follow-
ers but only follows 28 users. Miscreants try to contact
everyone and hope that someone can follow back. The
design should be able to support different user social
patterns with different purpose of use.

2. Support users with heterogenous access patterns as
well as social behaviors. Unlike other P2P applica-
tion such as file downloading and video streaming, mi-
croblogging users have highly dynamic access patterns.
In case of Twitter, various communication channels
are supported including SMS, RSS feeds, Web, dedi-
cated software, etc. Moreover, the users’ behaviors are
quite different. Such heterogeneity causes significant
dynamics to decentralized systems (e.g., peer churn).

3. Support users with efficient, robust and scalable data
collection. Since the social profiles/attributes and other
interaction information are very important aspects for
system designers and socialists to understand the user
behaviors, restore from failures or peer churns as well
as improve the system design, it is crucial to collect
related information in an efficient, robust and scalable
manner, whilst protecting the users’ privacy.

In this position paper, we present a decentralized, socio-
aware online microblogging system named Cuckoo. Our ob-
jective is to design, implement, and deploy a decentralized
socio-aware microblogging service, which is fully compatible
to the current Twitter architecture. In other words, we ex-
pect to study how the decentralized Cuckoo system helps
microblogging service to improve the performance, to save
the bandwidth costs, and to reduce the sluggishness and
downtime, while performing equally well or even better than
the conventional centralized system. For this objective, the
design of Cuckoo conserves valuable bandwidth and storage
resources on Twitter server while taking advantage of peer
assistance in a complementary fashion. In response to the
challenges, Cuckoo takes advantages of social relationship
while leverages P2P techniques towards scalable, reliable mi-
croblogging services. Different from traditional approaches
used in centralized server-based systems [21,25], data col-
lection and dissemination in such distributed heterogeneous
environments are challenged by the dynamics, heterogeneity
and distributed nature of the system.
The rest of the paper is organized as follows. Sec. 2 re-

views the background and related works. Sec. 3 presents the
design rationale of Cuckoo and summarizes the incentives
of Cuckoo adoption which may brings for both the service
provider and the end users. We discuss the technical aspects
to be considered and report our work in progress in Sec. 4.
Sec. 5 concludes the paper and poses the future work.

2. BACKGROUND AND RELATED WORK
Thanks to the success of Twitter [9], a number of mi-

croblogging services are developed and deployed on the In-
ternet [5,6,8,12]. Although each of them has some additional
features than original Twitter, common to these microblog-
ging services is the opt-in subscription model based on the
“follow” operation. The subscription model is deceptively
simple. A user can publish microblogs with a length limit of
viewable text (up to 140 characters in Twitter). The other
users who have explicitly follow that user will receive this
microblog, i.e., being a follower means that the user will
receive all the micro-contents from the one he follows. A
user can follow anyone, and the one being followed need not
follow back. Note that the relationship of following and be-
ing followed requires no reciprocation, i.e., “follow” is a uni-
directional operation. This opt-in, social networking model
effectively resists spamming so that users only receive the
microblogs from who they are concerning. On the other
hand, the “small-world” social feature [28] makes it possible
for a free comment to blossom into a worldwide discussion.

The popularity of microblogging services has already at-
tracted some research interests in the computer networking
perspective [21,23,25,31]. Most of these works are measure-
ment studies on Twitter including Twitter’s social graph,
its topological and geographical characteristics, the popu-
larity of the micro-contents, etc. Java et al. [21] report some
early observations of Twitter in 2007. They study the topo-
logical and geographical properties and show user clusters
formed by users with similar intention. Krishnamurthy et
al. [23] identify distinct classes of Twitter users as well as
their behaviors according to the number of followings and
followers. Kwak et al. [25] crawl the entire Twittersphere
based on which a comprehensive measurement study is per-
formed. In the following-follower analysis, they find a no-
power-law follower distribution, a short effective diameter,
and low reciprocity. The influentials, trending topics, and
impact of retweet are also studied.

The only proposed decentralized system prototype focus-
ing on microblogging so far is FETHR [31], which is most
related to our work. FETHR [31] envisions the fully de-
centralized microblogging for the first time. The main idea
of FETHR is to let users directly contact each other via
HTTP and employ gossip for popular micro-content propa-
gation. However, FETHR lacks of several practical consider-
ations, e.g., decentralized user lookup, overlay maintenance,
etc. In addition, FETHR cannot provide any guarantee on
micro-content delivery and the delivery performance will be
degraded under asynchronous user access patterns.

There are some decentralized OSN prototypes which are
related to our work [15,17,24,32]. PeerSoN [15] is a project
for P2P OSNs that proposes to use dedicated third-party
DHTs for lookup meta-data. Based on the meta-data, di-
rect information exchange between users can be achieved.
Safebook [17] aims at protecting users’ security and privacy.
In Safebook, the “matryoshka” structures are designed to
protect users data based on trust transitivity. Another re-
lated decentralized OSN system, Vis-à-Vis [32] is based on
the concept of Virtual Individual Server (VIS), which is used
for managing and storing user data. VISs self-organized into
multi-tier DHTs that represent OSN groups, with one DHT
per group. The top-tier meta-DHT is used to advertise and
search for public OSN groups. uaOSN [24] proposes to dis-
tribute only the storage of heavy content while retain the
business model and functionalities of OSN provides.

Table 1: Comparison with the related systems

System Design Target Socio-Aware Compatible Additional Infr. Struc. Overlay

Cuckoo microblogging
√ √

×
√

FETHR microblogging × × × ×
PeerSoN OSN × ×

√ √

Safebook OSN
√

× ×
√

Vis-à-Vis OSN × ×
√ √

uaOSN OSN ×
√ √

×

These works give good inspiration to the design of Cuckoo.
However, since previous works do not consider the features of
microblogging service, they cannot fit the new service well.
We summarize these works in comparison with Cuckoo in
Table 1. The system features listed for comparison include
the target service of design (Design Target), whether tak-
ing advantage of social relationship (Socio-Aware), whether
compatible for current system (Compatible), whether re-
quiring additional infrastructure (e.g., third-party DHT [15]),
and whether based on structured overlay.

3. DESIGN RATIONALE
In typical microblogging services, a user has one or several

of the following social relations: friend, neighbor, follower,
and following. Friend is a reciprocate social link between two
users, which indicates that two users are acquaint with each
other and willing to help each other. Microblogging (e.g.,
Twitter) shows a quite low level of such reciprocity com-
pared with conventional OSNs [25]. Neighbor refers to the
relationship between users with common interests. For ex-
ample, two users sharing a same following are neighbors. In
microblogging, follower and following are the most common
one-way connections. Our design takes advantage of these
social relationship to construct the decentralized service.
For providing location service and improving availability,

Cuckoo organizes user clients into a structured P2P over-
lay. Without loss of generality, we utilize Pastry [30] as
the underlying P2P overlay. The 128-bit nodeId can be
generated according to the sequential userId (e.g., Twitter
userId). In this case, a user can find any online user in less
than ⌈log2bN⌉ steps on average (N is the number of online
nodes and b is a configuration parameter with typical value
4). In our current design, we do not let peers store irrelevant
micro-contents for security and fairness considerations.

3.1 Node State
Besides the Pastry routing table, each user maintains 4

lists for friends, neighbors, followings, and followers. A
user keeps connection with m online friends. We set m =
max(min(f, T), log2bf), where f is the user’s number of
friends and T is a threshold. The user itself and his f friends
make up the virtual node (VN) via request redirection, i.e.,
friends help each other to balance load and improve avail-
ability. Fig. 1 gives an example of the VN mechanism. The
VN d46a1c consists of the physical node d46a1c and its
3 friends (001ab0, 420a1b, 64fb26). The following list
is a static config file containing nodeId of all the follow-
ing users. No real-time connection is required. Like the
friend list, a user also maintains n random followers where
n = max(min(l, T ′), log2b l), (l is the number of followers
and T ′ is a threshold). The idea of the calculation of m
and n is that if a user has 10 or fewer followers/friends (it is

reported in [31] that half of Twitter users have 10 or fewer
followers), he keeps connection with all his followers. Oth-
erwise for a user has huge numbers of followers, he keeps
connections with a logarithmic subset of all the followers.
Finally, the neighbor list is initialized during the bootstrap-
ping stage. In boostrapping, the user updates its following’s
recent statuses and initializes the neighbor list in this pro-
cess.

Virtual Node

d46a1c

friend

friend

friend

neighbor

follower

DHT
route

DHT
route

DHT
route DHT

route

65a1fc

d13da3

d4213f

d462ba

64fb26

420a1b

001ab0

Figure 1: Network Model

3.2 Update Recent Statuses
When joining the system, a new node setups its Pastry

routing table and then utilizes the underlying infrastructure
to fetch the updated statuses of its followings. Note that if
the following user is popular2, it is likely that the routing
path contains the new node’s neighbors. In this case, the
routing process will not continue. The new neighbor directly
sends the recent statuses of the following to the new node
while help to initialize the neighbor list. Fig. 1 gives an
example for this process, in which node 65a1fc gets the
statuses of node d46a1c directly from node d4213f. Even
if no neighbor is met, the request message will reach the
destination and both recent statuses and neighbor list can
be updated. Assume the popularity of the following user
is δ, the expected steps for fetching the updated statuses is
approximately

∑K
i=1(1− δ)i−1 · δ · i (K = ⌈log2bN⌉).

Note that DHT is efficient for locating rare items but in-
curs higher overheads. On the other side, flooding-based
searching is more efficient for locating highly popular items
but poorly suited for locating rare items [27,34]. Thus, our
design chooses a hybrid searching methods, i.e., use flood-
ing to fetch statuses from influentials like cnnbrk and use

2Here popularity refers to the ratio between the number of
followers and the total number of users.

DHT to fetch statuses from normal users. The flooding is
through “near” nodes according to some proximity metric.
Fortunately, Pastry have already provided these near nodes
in its “neighborhood set”.

3.3 Micro-content Propagation
When an online user publish a new micro-content, the

microblogging service should disseminate it to all the user’s
followers. We use push method instead of conventional pull
method to achieve the dissemination. The push method
is much more efficient than the pull method. It does not
require meta-data exchanging or periodical requests. More-
over, by replicating micro-contents among followers, the fol-
lowers can help each other in a cache-and-relay style, in the
case the original publisher later become unavailable or the
publisher cannot afford sending updates to all his followers.
For normal users, directly pushing messages from an orig-

inal publisher to his followers seems to be enough (it is re-
ported that 90% users in Twitter have less than 100 follow-
ers [31]). For the broadcasters or influentials like cnnbrk,
the publisher cannot afford sending updates to all his follow-
ers. In this case, our design uses gossip-based push between
neighbors to propagate the micro-news. Gossip (also called
epidemic, rumor) protocol has been proved to be a robust
and scalable way of propagating information in dynamic and
heterogeneous networks [19]. The theoretical support pro-
vided in [22] proves if there are n nodes and each node gos-
sips to log(n)+k other nodes on average, the probability that

everyone gets the message converges to e−e−k

, very close to
1.0 without considering the bandwidth constraint, latency,
failure, etc. This result provides a guideline for the design of
membership management, i.e., maintain the neighbor list to
be logarithmic in the size of the number of all the followers.

3.4 Functionalities of Service Providers
In our system, if an unpopular node is not online nor its

friends, its profile and recent statuses cannot be found in the
overlay network. In this case, the dedicated servers from
the service provider (e.g., Twitter server) work as backup
servers. The omnipotent servers are always online and guar-
antee high availability of the service. Note that the users
fetch profiles and statuses from servers only when they can-
not find them successfully in the overlay network. In most
cases, it is mainly due to the inactive and unpopular users,
and thus requesting from servers causes acceptable overhead.
When publishing new microblogs, the publisher directly

uploads the digest of the microblog to the server in the same
time of gossiping. In our design, we allow long blog con-
tent (with more characters than 140) exchanging within the
overlay network. On the other hand, the users only upload
fixed-length (e.g., 140 characters) digests to the server, with
the consideration of the micro features that is suitable for
SMS transmission.
Fig. 2 demonstrates the system architecture as well as the

relationship between service provider and end users. Our de-
sign does not exclude the service provider from the picture.
Instead of decentralizing the full system, we propose to en-
rich the users’ quality of experience in the overlay network
while let the servers provide high availability and reliability.
In other words, our objective is to help the service providers
(i.e., the business companies) but no to bury them.

3.5 Security Issues
We would be remiss if not discuss the security issues of

 Service Provider

DHT

Ring
gossip

gossip

gossip

upload

Mobile Users

Internet Users

SMS

SMS

SMS

Figure 2: System Architecture

Cuckoo in today’s Internet environment, although our main
focus is not on security. The presence of malicious users and
malwares in the overlay network requires additional security
mechanism to safeguard against attack.

One important thing is authentication since some malware
may impersonate some normal users to distribute spam. To
defend against the forged mico-contents, asymmetric key
cryptography and digital signature can be employed, i.e.,
publishers include digital signatures with each microblogs
or even encrypt the micro-contents. To defend against the
forged users, some sophisticated authentication infrastruc-
ture should be used, e.g., challenge-response protocol.

Another problem is suppression, i.e., malicious interme-
diate nodes refuse to forward micro-contents or filter some
important micro-news. FETHR [31] proposes to link a user’s
microblogs together into a hash chain according to the time-
line, based on which the integrity can be checked.

The third problem is privacy preserving. Although cur-
rent microblogging services like Twitter and Identi.ca seem
quite open, there are still some users who do not want their
profiles and microblogs to be in public. In this case, data en-
cryption and control access by appropriate key sharing and
distribution is necessary There are already some great effort
to protect privacy in OSNs including the PKI-based (public
key infrastructure) approach [15] and attribute-based en-
cryption (ABE) [14].

3.6 Data Collection
One important aspect of microblogging systems is data

collection which is critical for researchers and third-party
developers to understand user behaviors as well as user ac-
cess patterns. So far, data collection is performed via crawl-
ing on centralized servers [21, 25], which may cause traffic
storms and is not scalable. Even worse, such methods fail
to retrieve statistics from departed peers. In Cuckoo, data
collectors are able to collect vital statistics based on the
underlying overlay network so as to circumvent server bot-
tleneck. The basic idea is to let peers directly exchange
statistics in a decentralized fashion. Advanced techniques
such as network coding [29] and data aggregation [33] can
be integrated.

It is worth noticing that in microblogging services as well
as OSNs, the developers should collect and measure social

information to improve system design, in addition to the tra-
ditional network metrics (e.g., end-to-end delay [13], avail-
able bandwidth [20], transmission error [16]). The social
information includes user popularity, user social behavior,
user access pattern, etc. Cuckoo includes an inherent data
collection module which allows the efficient, robust and scal-
able exchange, look up and storage of such social data in a
privacy protected manner. Further details are currently in-
vestigated and extended for potentially other OSNs.

3.7 Incentives
We summarize the incentives of adoption of Cuckoo in two

sides: the service provider side and the end user side. For
the service provider, the incentives of adopting the Cuckoo
system is straightforward:

1. Lower Bandwidth Cost. Servers can get rid of su-
perfluous, sticky and repeated HTTP requests from
huge numbers of user clients even there is no new up-
date. Bandwidth is mainly used for collecting users’
profiles and microblogs.

2. High Scalability. The decentralized architecture is
highly scalable that moderates service provider’s grow-
ing pain in the face of steadily growing userbase. Less
infrastructures are demanded compared with the cen-
tralized equivalents.

3. Higher Security. The decentralized nature makes
it more robust to malicious attacks, e.g., DoS attacks
(Twitter did be a victim of DDoS attack [10]).

4. Better Quality of Service. Better QoS can be
achieved by removing the performance bottleneck and
single point of failure.

Most important, the business company will not lose any
functionality nor the user community. For the end users, the
incentives include:

1. High Reliability. Since both user profiles and mi-
croblogs are distributed and replicated in the distributed
overlay network in addition to the central server, infor-
mation losses in a single location can be easily restored.
Besides, the failure of central server (e.g., outrage [3])
will not paralyze the whole system.

2. Better Quality of Experience. Corresponding to
better QoS offered by the service provider, end users
can receive better QoE including quick response time,
higher searching efficiency, longer contents allowed, etc.

3. Enrichment of Additional Functions. Cuckoo’s
decentralized overlay network is an open, powerful in-
frastructure for third-party developers to enrich addi-
tional functions for end users which are not yet pro-
vided by service providers, e.g., photo and multimedia
contents in microblogs.

4. IMPLEMENTATION
We are now working on to implement the proposed mi-

croblogging system prototype. We choose FreePastry [4]
as our overlay infrastructure for Pastry’s good properties
(e.g., locality aware) as well as FreePastry’s platform inde-
pendence (Java source code). Cuckoo can be directly ap-
plied by any structured overlay network that supports the

key-based routing (KBR) API defined in [18]. Vis-à-Vis [32]
and uaOSN [24] propose to use some more stable external
storage facilities (Amazon EC2 [1] and Amazon S3 [2] in Vis-
à-Vis, set-top boxes/residential routers with hard drives [26]
in uaOSN) to achieve high availability. However, the former
is too expensive for end users (running a virtual machine
for one month costs close to US$75), while the latter is re-
stricted by the deployment difficulties. Our implementation
just employs end users’ desktop machines to construct the
decentralized system. We are confident to provide good per-
formance in the face of peer churn. On the other hand, we
can expect a much higher performance when the expensive
external storage facilities are available.

In the next stage, we would like to validate our design
and study the performance gain by deploying the system
on PlanetLab [7] and testing it by real microblogging traces
and dataset, e.g., the dataset provided in [25]. We also plan
to implement a Twitter client software that is based on the
design of Cuckoo and is fully compatible to current Twitter’s
microblogging service. Note that Cuckoo does not require
any functionality and modification on the server side. We
expect to collect large volumes of microblogging user data
via this Cuckoo-based Twitter client.

5. CONCLUSIONS AND FUTURE WORK
Although in the infancy, microblogging services are having

the golden era in the latest years. Twitter, the pioneer mi-
croblogging service provider has attracted more than 41.7
million users in less than three years and its userbase is
still growing incredibly fast. However, current microblog-
ging systems severely suffer from performance bottlenecks
and central points of failure due to the unscalable central-
ized architecture. In this position paper, we present a decen-
tralized, socio-aware microblogging system, named Cuckoo.
We present the design rationale of Cuckoo that takes advan-
tages of the inherent social relationships while leverages P2P
techniques towards scalable, reliable microblogging services.
Besides, Cuckoo provides a flexible interface for data collec-
tion while circumventing unnecessary traffic on the server.
We discuss the technical aspects to be considered and show
that Cuckoo can bring good incentives of adoption for both
service providers and end users.

In the future, we plan to improve the work in the following
aspects. First, we expect to support “topic trend” function
in Cuckoo like the “#” operation in Twitter. A quite com-
mon use for microblogging services these days is looking at
particular topics (e.g., UK general election). Second, we
are interested in supporting user mobility in Cuckoo. Cur-
rently, Cuckoo is designed only for desktop Internet users
(the SMS is provided by dedicate servers). User mobility
via wireless Internet access implies high churn and should
be designed carefully. Third, we hope to enrich more third-
party functions in Cuckoo such as group communication,
real-time chatting in addition to the basic “follow” opera-
tion. Fourth, we would like to drive the service providers
to add some functions on the server side in a complemen-
tary manner that can benefit the whole system. Finally,
the details about data collection module of Cuckoo will be
explored, which is expected to be applicable for other OSNs.

6. ACKNOWLEDGEMENT
The authors would like to thank Pan Hui from Deutsche

Telekom Laboratories and Tristan Henderson from Univer-
sity of St Andrews for their helpful comments.

7. REFERENCES
[1] Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/.

[2] Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

[3] Facebook database outrage cut off about 150,000.
http://news.cnet.com/8301-13577_3-10373349-

36.html/.

[4] FreePastry. http://www.freepastry.org/.

[5] Google Buzz. http://www.google.com/buzz/.

[6] Identi.ca – public timeline. http://identi.ca/.

[7] PlanetLab. http://www.planetlab.org/.

[8] Plurk is a social journal for your life.
http://www.plurk.com/.

[9] Twitter. http://www.twitter.com/.

[10] Twitter, Facebook attack targeted one user.
http://news.cnet.com/8301-27080_3-10305200-

245.html?tag=mncol.

[11] ‘Twitters’ beat media in reporting china earthquake.
http://afp.google.com/article/ALeqM5hUZGbUECMKx

_P5H3lRXPnGo6cPjw/.

[12] Yammer: Enterprise Microblogging.
https://www.yammer.com/.

[13] S. Agarwal and J. R. Lorch. Matchmaking for Online
Games and Other Latency-Sensitive P2P Systems. In
SIGCOMM’09: Proc. of the 15th ACM SIGCOMM,
Barcelona, Spain, August 2009.

[14] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: An Online Social Network
with User-Defined Privacy. In SIGCOMM’09: Proc. of
the 15th SIGCOMM, Barcelona, Spain, August 2009.

[15] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta.
PeerSoN: P2P Social Networking – Early Experiences
and Insights. In SNS’09: Proc. of the 2nd ACM
Workshop on Social Network Systems, Nuremberg,
Germany, March 2009.

[16] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless
Routing. In MobiCom’03: Proc. of the 10th ACM
MobiCom, San Diego, CA, September 2003.

[17] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: a
Privacy Preserving Online Social Network Leveraging
on Real-Life Trust. IEEE Communication Magazine,
47(12):94–101, 2009.

[18] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a Common API for Structured
Peer-to-Peer Overlays. In IPTPS’03: Proc. of the 3rd
International Workshop on Peer-to-Peer Systems,
Berkeley, CA, USA, February 2003.

[19] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and
L. Massoulié. From Epidemics to Distributed
Computing. IEEE Computer, 37:60–67, 2004.

[20] M. Jain and C. Dovrolis. End-to-End Available
Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput. In
SIGCOMM’02: Proc. of the 8th ACM SIGCOMM,
Pittsburgh, PA, USA, August 2002.

[21] A. Java, X. Song, T. Finin, and B. Tseng. Why We
Twitter: Understanding Microblogging Usage and
Communities. In Proc. of the Joint 9th WebKDD and
1st SNA-KDD Workshop on Web Mining and Social
Network Analysis, San Jose, CA, USA, August 2007.

[22] A. M. Kermarrec, L. Massoulié, and A. J. Ganesh.

Probabilistic Reliable Dissemination in Large-Scale
Systems. IEEE Transactions on Parallel and
Distributed Systems, 14(3):248–258, 2003.

[23] B. Krishnamurthy, P. Gill, and M. Arlitt. A Few
Chirps About Twitter. In WOSN’08: Proc. of the 1st
ACM SIGCOMM Workshop on Online Social
Networks, Seattle, WA, USA, August 2008.

[24] M. Kryczka, R. Cuevas, C. Guerrero, E. Yoneki, and
A. Azcorra. A First Step Towards User Assisted
Online Social Networks. In SNS’10: Proc. of the 2nd
ACM Workshop on Social Network Systems, Paris,
France, April 2010.

[25] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a Social Network or a News Media? In
WWW’10: Proc. of the 19th International World
Wide Web Conference, Raleigh, NC, USA, April 2010.

[26] N. Laoutaris, P. Rodriguez, and L. Massoulié.
ECHOS: Edge Capacity Hosting Overlays of Nano
Data Centers. ACM SIGCOMM Computer
Communication Review, 38(1):51–54, 2008.

[27] B. T. Loo, R. Huebsch, I. Stoica, and J. M.
Hellerstein. The Case for a Hybrid P2P Search
Infrastructure. In IPTPS’04: Proc. of the 3rd
International Workshop on Peer-to-Peer Systems, San
Diego, CA, USA, February 2004.

[28] S. Milgram. The Small-World Problem. Psychology
Today, 1(1):61–67, 1967.

[29] D. Niu and B. Li. Circumventing Server Bottlenecks:
Indirect Large-Scale P2P Data Collection. In
ICDCS’08: Proc. of the 28th International Conference
on Distributed Computing Systems, Beijing, China,
June 2008.

[30] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In Middleware’01:
Proc. of the 18th IFIP/ACM International Conference
on Distributed System Platforms, Heidelberg,
Germany, November 2001.

[31] D. R. Sandler and D. S. Wallach. Birds of a FETHR:
Open, decentralized micropublishing. In IPTPS’09:
Proc. of the 8th International Workshop on
Peer-to-Peer Systems, Boston, MA, USA, April 2009.

[32] A. Shakimov, A. Varshavsky, L. P. Cox, and
R. Cáceres. Privcy, Cost, and Availability Tradeoffs in
Decentralized OSNs. In WOSN’09: Proc. of the 2rd
ACM SIGCOMM Workshop on Online Social
Networks, Barcelona, Spain, August 2009.

[33] R. van Rennesse, K. Birman, D. Dumitriu, and
W. Vogels. Scalable Management and Data Mining
using Astrolabe. In IPTPS’02: Proc. of the 1st
International Workshop on Peer-to-Peer Systems,
Cambridge, MA, USA, March 2002.

[34] M. Zaharia and S. Keshav. Gossip-based Search
Selection in Hybrid Peer-to-Peer Networks. In
IPTPS’05: Proc. of the 4th International Workshop
on Peer-to-Peer Systems, Ithaca, NY, USA, February
2005.

[35] D. Zhao and M. B. Rosson. How and Why People
Twitter: The Role that Micro-blogging Plays in
Informal Communication at Work. In GROUP’09:
Proc. of the 7th International Conference on
Supporting Group Work, Sanibel Island, FL, USA,
May 2009.

